If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X-2015=0
a = 1; b = 1; c = -2015;
Δ = b2-4ac
Δ = 12-4·1·(-2015)
Δ = 8061
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{8061}}{2*1}=\frac{-1-\sqrt{8061}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{8061}}{2*1}=\frac{-1+\sqrt{8061}}{2} $
| x^2-8x+16+1=0 | | (1x+1x)=0 | | x^2-8x+1=5 | | 96x+560=40 | | 180+2x-20=4x+10 | | 12x-15x=290 | | 4x+3=-14-3x | | -4(3x+4)=32 | | Y4-17y^+16=0 | | 66+7(x+9)=7x-2 | | 4x3+3x-1=0 | | T=t+t | | 9^(x-1)=27 | | 3t-5=3t-5 | | y’’-2y-2=0 | | 0.1x-0.054=0.039 | | 8=1.5612^n | | 7×(6-2x)-3×(4x+1)=0 | | 0.5x+6.3=7.5 | | 5v+33=-7(v+9) | | 7.4x+12.7=18.62 | | 11=4a+3 | | 5x-41=2(5x+2) | | 5.1x-2.74=3.38 | | 7x/7=162/7 | | 0.5-1.7x=0.74+2.3x | | 8(3x-3)=12(4-2x) | | 5x/12+1/6-(-(2x+5))=0 | | 5(2x-7)=9x+65 | | X+y=416 | | 22+3x-5x=6+9x+5 | | 1/3(c+1)=1/6(c-5) |